فهرست مطالب

Biolmpacts
Volume:1 Issue: 1, Mar 2011

  • تاریخ انتشار: 1389/10/11
  • تعداد عناوین: 9
|
  • Rashidi Mr Page 1
  • Nakhlband A., Barar J Page 7
    Introduction
    The integrity of the cells/tissues in anterior and/or posterior segments of the eye plays a crucial role in biofunctions of the vision. To maintain ocular homeostasis, selective restrictiveness of the ophthalmic membranes and barriers control must act on shuttling of biomolecules. Thus, not all attempts to apply de novo nanotechnology approaches for ocular pharmacotherapy have met with the same successes as those cited here in this review, and sometimes these novel technologies tools provoke a great deal of challenges and hurdles mainly because of functional presence of these barriers.
    Methods
    Recent published articles related to application of ocular nanomedicines were reviewed and highlighted in this review article.
    Results
    It seems the emergence of nanomedicines have arisen great hopes for ophthalmic pharmacotherapy, in which nanostructured medicines are expected to be able to cross the restrictive barriers of the eye. Although such fast inauguration of ocular nanomedicines will literally convey new challenges in the regulatory and translational processes, it will also grant a prolific platform from which many exciting, and yet unimagined, applications of biomedical nanotechnology will emerge for pharmacotherapy of the eye.
    Conclusion
    This review provide recent advancements on ocular nanomedicines.
  • Kafil V., Omidi Y Page 23
    Introduction
    Polyethylenimine (PEI), as a nonviral cationic polymer, has been widely used as gene delivery nanosystem. Although a number of investigations have highlighted its toxic impacts on target cells through induction of apoptosis/necrosis, still it is essential to look at its structural impacts on target cells.
    Methods
    In this current study, cytogenomic impacts of 25 kD linear and branched PEI (LPEI and BPEI, respectively) in A431 cells are reported to address possible mechanism for induction of apoptosis. At 40-50% confluency, A431 cells were exposed to PEI at a recommended concentration for 4 hr. After 24 hr, to detect apoptosis and DNA damage, the treated cells were subjected to MTT assay, FITC-labeled annexin V flow cytometry and comet assay.
    Results
    Flow cytometry assessments revealed that the BPEI can result in greater internalization than the linear PEI, which also induced greater cytotoxicity. Annexin V assay confirmed early and late apoptosis by BPEI, imposing somewhat DNA damage detected by comet assay. Western blot analysis resulted in induction of Akt-kinase which is possibly one of biomolecules affected by PEI.
    Conclusion
    These results highlight that, despite induction of Akt-kinase, the BPEI can elicit apoptosis in target cells.
  • Mehdi Saberian, Hossein Hamzeiy, Ayuob Aghanejad, Davoud Asgari Page 31
    Introduction
    Among several biosensing approaches, electrochemical-based procedures have been described as one of the most common and useful methods for sensing because of their simplicity, sensitivity, accuracy, and low cost. The electroactive species, which called redox, play a main role in the electrochemical-based approaches. Of several redox molecules used for electrochemical experiments, ferrocene is one of the commonly used redox molecules. However, instability of ferrocenium ion in the chloride containing solutions appeared to be weakness of this redox molecule limiting its utilization.
    Methods
    In the current study, Juglone was attached (using EDC/NHS coupling method) to the 3'-amino-modified terminus of the immobilized specific aptamer of codeine, which was successfully used in a cyclic electrochemical voltammetry procedure.
    Results
    The cyclic voltammogram peak of aptamer-attached Juglone was observed in the potential range of +0.4 to +0.9 V and the fabricated aptamer-based sensor was used for detection of different concentrations of codeine in the phosphate buffer 0.1 M solution containing 2 M NaCl.
    Conclusion
    Based on these findings, it can be suggested that the new aptamer-attached Juglone could be considered as an effective alternative redox molecule in particular with oligonucleotide-based sensing systems.
  • Ahmad Yari Khosroushahi, Hossein Naderi, Manesh, Henrik Toft Simonsen Page 37
    Introduction
    To control the tissue browning phenomenon, callus growth, total phenolics content and paclitaxel production, in the current investigation, we evaluated the effects of citric acid and ascorbic acid (as antioxidants) and glucose, fructose and sucrose in callus cultures of Taxus brevifolia.
    Methods
    To obtain healthy callus/cell lines of Taxus brevifolia, the effects of two antioxidants ascorbic acid (100-1000 mg/L) and citric acid (50-500 mg/L), and three carbohydrates (glucose, fructose and sucrose (5-10 g/L)) were studied evaluating activities of polyphenol oxidase (PPO) and peroxidase (PO) enzymes, callus growth/browning, total phenolics and paclitaxel production.
    Results
    These antioxidants (ascorbic acid and citric acid) failed to show significant effects on callus growth, browning intensity or paclitaxel production. However, the carbohydrates imposed significant effects on the parameters studied. High concentrations of both glucose and sucrose increased the browning intensity, thus decreased callus growth. Glucose increased paclitaxel production, but sucrose decreased it.
    Conclusion
    These results revealed that the browning phenomenon can be controlled through supplementation of the growth media with glucose, sucrose (5 g/L) and fructose (10 g/L), while increased paclitaxel production can be obtain by the optimized media supplemented with glucose (10 g/L), sucrose and fructose (5 g/L).
  • Maleki H., Mashinchian O Page 47
    Introduction
    Streptomyces, gram-positive and aerobic bacteria, are distinguished genus of Actinomycetes. This economically important genus is well studied owing to its capacity in producing more than 70% of antibiotics. In fact, need for novel, safe and more efficient antibiotics is a key challenge to the pharmaceutical industry today, moreover, increase in opportunistic infections in the immune compromised host has influenced this demand. Nowadays, evaluating morphological and biochemical differences as well as studying streptomyces genetic diversity via molecular indicators seem to be the most common method for screening this genus.
    Methods
    In this research we evaluate the potential of antibiotic production and characterize the UV and FTIR spectroscopy and HPLC (High performance liquid chromatography) analysis pattern of streptomyces from various locations in northwest of Iran. Regarding this, 30 soil samples were collected randomly from different zones of northwest region of Iran. Then, following the extraction of secondary metabolite, the UV and FTIR spectroscopy analysis was carried out for characterization of the various extracts.
    Results
    Considering the coordinate analysis of UV and FTIR spectroscopy pattern, the isolate G614C1 with substantial antimicrobial activity exhibited absorption at 3411 cm-1 which is indicator of hydroxyl groups, absorption at 2856 and 2915 cm-1 indicating hydrocarbon chassis, and absorption at 1649 cm-1 indicating a double bond of polygenic compound.
    Conclusion
    These results highlight the importance of streptomyces isolates in antibiotic production. HPLC confirmed the production when compared with standards.
  • Mohammad, Hossein Sorouraddin, Mohammad, Yaser Khani, Kaveh Amini, Abdolhossein Naseri, Davoud Asgari, Mohammad, Reza Rashidi Page 53
    Introduction
    6-Mercaptopurine (6MP) is an important chemotherapeutic drug in the conventional treatment of childhood acute lymphoblastic leukemia (ALL). It is catabolized to 6-thiouric acid (6TUA) through 8-hydroxo-6-mercaptopurine (8OH6MP) or 6-thioxanthine (6TX) intermediates.
    Methods
    High-performance liquid chromatography (HPLC) is usually used to determine the contents of therapeutic drugs, metabolites and other important biomedical analytes in biological samples. In the present study, the multivariate calibration methods, partial least squares (PLS-1) and principle component regression (PCR) have been developed and validated for the simultaneous determination of 6MP and its oxidative metabolites (6TUA, 8OH6MP and 6TX) without analyte separation in spiked human plasma. Mixtures of 6MP, 8-8OH6MP, 6TX and 6TUA have been resolved by PLS-1 and PCR to their UV spectra.
    Results
    Recoveries (%) obtained for 6MP, 8-8OH6MP, 6TX and 6TUA were 94.5-97.5, 96.6-103.3, 95.1-96.9 and 93.4-95.8, respectively, using PLS-1 and 96.7-101.3, 96.2-98.8, 95.8-103.3 and 94.3-106.1, respectively, using PCR. The NAS (Net analyte signal) concept was used to calculate multivariate analytical figures of merit such as limit of detection (LOD), selectivity and sensitivity. The limit of detections for 6MP, 8-8OH6MP, 6TX and 6TUA were calculated to be 0.734, 0.439, 0.797 and 0.482 µmol L-1, respectively, using PLS and 0.724, 0.418, 0783 and 0.535 µmol L-1, respectively, using PCR. HPLC was also applied as a validation method for simultaneous determination of these thiopurines in the synthetic solutions and human plasma.
    Conclusion
    Combination of spectroscopic techniques and chemometric methods (PLS and PCR) has provided a simple but powerful method for simultaneous analysis of multicomponent mixtures.
  • Hassan Namazi, Sanaz Motamedi, Mina Namvari Page 63
    Introduction
    Citric acid-polyethylene glycol-citric acid (CPEGC) triblock dendrimers can serve as potential delivery systems.
    Methods
    In this investigation, CPEGC triblock dendrimers were synthesized and then imidazole groups were conjugated onto the surface of the G1, G2 and G3 of the obtained dendrimers. In order to study the type of the interactions between the functionalized dendrimers and a drug molecule, Naproxen which contains acidic groups, was examined as a hydrophobic drug in which the interactions would be of the electrostatic kind between its acidic groups and the lone pair electrons of nitrogen atom in imidazole groups. The quantity of the trapped drug and also the amount of its release were measured with UV spectrometric method in pH 1, 7.4 and 10. The average diameter of the nanocarriers was measured by Dynamic Light Scattering (DLS) technique
    Results
    The size range of particles was determined to be 16-50 nm for different generations. The rate of the release increased in pH=10 in all generations due to the increase in Naproxen solubility and the hydrolysis of the esteric bonds in the mentioned pH. The results showed that the amount of the trapped drug increased with the increase in the generation of the dendrimer and pH.
    Conclusion
    Based on our findings, we suggest CPEGC triblock dendrimers possess great potential to be used as drug/gene delivery system.